
( 1)

JOURNAL OF APPROXIMATION THEORY 72, 193-209 (1993)

Relative Asymptotics for Orthogonal Polynomials
with a Sobolev Inner Product*

FRANCISCO MARCELLAN

Departamento de Matemiltica, Universidad Carlos III de Madrid,
Avda. Mediterrimeo, £-28913 Leganes, Espana

AND

WALTER VAN ASSCHE t

Department of Mathematics, Katholieke Universiteit Leuven,
Celestijnenlaan 200B, B-300/ Heverlee (Leuven), Belgium

Communicated by A. P. Magnus

Received December 28, 1990; accepted in revised form December 3, 1991

We investigate orthogonal polynomials for a Sobolev type inner product
(f, g) = (f, g) + )J'(c) g'(c), where (f, g) is an ordinary inner product in L 2(J1.)
with J1. a positive measure on the real line. We compare the Sobolev orthogonal
polynomials with the orthogonal polynomials corresponding to the measure J1. and
analyse the five-term recurrence relation for the Sobolev orthogonal polynomials.
(,' 1993 Academic Press, Inc

1. INTRODUCTION

Suppose !lk (k = 0, I, 2, ..., m) are positive measures on the interval (a, b)
and introduce the Sobolev inner product

<f,g)= f rj(k)(X)g(k)(x)d!lk(X),
k~O a

where f, g are in the Sobolev space

W2• m[(a, b); !1o, "', !1m]

= {fE A m(a, h) n L 2 [(a, b); !1o, ..., !1m _ I] :JIm) E L 2 [ (a, b); !1m] }.
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As usual Am(a, b) is the function space containing all functions
f: (a, b) -> C such that IE e(m - 2) and 11m - I) is absolutely continuous on
(a, b). We consider the orthonormal polynomials qn(x) (n = 0,1,2, ... )
which are associated to this inner product,

(2)

Sobolev type orthogonal polynomials already appear in work of Lewis
[10J and were later considered by Althammer [1 J and further investigated
by Brenner [4J, Schiifke [14J, Iserles et at. [7, 8J, and others. We are par
ticularly interested in the case where flo = fl is a positive measure for which
the orthogonal polynomials are known and flk (k = 1, 2, ... , m) are measures
with all their mass concentrated at one point C E IR. This particular case has'
also been studied previously by Koekoek [9J, Bavinck and Meijer [3,2J,
and Marcellan and Ronveaux [11]. Our goal is to compare the Sobolev
orthogonal polynomials with the ordinary orthogonal polynomials
associated with the measure fl in order to investigate how the addition of
the derivatives in the inner product influences the orthogonal system. We
will emphasize the asymptotic behaviour of the Sobolev orthogonal poly
nomials relative to the ordinary orthogonal polynomials associated with
the measure fl. In order to do this we will assume that fl is a measure for
which the asymptotic behaviour of the orthogonal polynomials is known,
and the most relevant class here is the Nevai class M(O, 1) of orthogonal
polynomials with converging recurrence coefficients.

2. COMPARISON OF ORTHOGONAL POLYNOMIALS

We consider the simple case where the Sobolev inner product is

<f, g) = r I(x) g(x) dfl(X) + )f'(c) g'(c),
_. I

(3)

where c E IR, A> 0, and fl E M(O, 1). Recall that the Nevai class M(O, 1)
consists of all measures fl for which the corresponding orthonormal
polynomials Pn(x) satisfy the three-term recurrence relation

XPn(X) = a~ + I Pn+ l(X) + b~Pn(x) + a~Pn_l(x)

with coefficients satisfying

(4)

lim a~=!,
n~ CJ)

lim b~=O.
n ~ 00

Denote by qn(x) (n=O, 1,2, ... ) the orthonormal polynomials for the
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Sobolev inner product (3) and by p,,(x) (n=O, 1,2, ... ) the orthonormal
polynomials corresponding to the measure J.L. OUf aim is to investigate the
relationship between both systems of orthonormal polynomials. The situa
tion is very similar to adding a mass point distribution to the measure J.L
and comparing the corresponding polynomials [12, pp. 131-133] and
surprisingly similar results are valid.

THEOREM 1. Let q,,(x) = y~x" + ... and p,,(x) = y"x" + ..., then

holds with

(5)

and

y~
-=
1'"

1 + AK~I.I/(C, c)
1+ ).K~I, I)(C, c)'

(6)

I () -r===~;:;===:P=~=(c=)==;:;==:=;==q c =
n J(1 + AK~l,-?(C, c»)(1 + AK~l.l)(C, c»

We have used the abbreviations

(7)

K~I,O)(x,y)= ±P~(X)Pk(Y)=~ K,,(x,y), (8)
k=O uX

n 82
K~I, l)(X, y) = L p~(x) p~(y) = -;-;- K,,(x, y), (9)

k=O uXUY

where

Kn(x, y) = L Pk(X) Pk(Y)
k=O

is the well-known kernel associated with the orthonormal polynomials Pn(x).

Proof It is clear that a Fourier expansion

n

qAx)= L ak,,,Pk(X)
k~O

always exists and that the Fourier coefficients are given by

ak, n=r q,,(x) Pk(X) dJ.L(x) = (qn, Pk) - Aq~(C) p~(c),
-I

( to)
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(11 )

If k = n we can compate the leading coefficients to find that an, n = Y~!Yn

When k<n then by orthogonality we have <qn,Pk)=O so that
ak. n = -J.q~(c) p~(c). This gives the expression (5). We now express the
quantities 1';, and q~(c) in terms of the orthogonal polynomials Pn(x), From
(10) we find

r q~(x) dJ1(x) = ±aL,
-I k~O

(
')2 n-I

= ~n + A2[q~(e)f L [p~(e)f.
} n k ~ 0

On the other hand, we also have by the orthonormality of the qn(x) with
respect to the Sobolev inner product

If we use this (11) and solve for [q~(c)] 2 then we find

( 12)

Another way to obtain an expression for q~(e) is to take derivatives in (5)
and evaluate at x = e, giving

'( )_1';, '() "( )K(J.I)( )qn e --Pne -Aqn e n-I e,e.
}'Il

Solving for q~(c) gives

'()_ (I'~hll)p;,(c)
qll e -1 +AK:/~?(c,c)'

If we eliminate q~(c) from Eqs. (12) and (13) then

(
1'~)2 = 1+ AK:,I,-\)(e, c)
I'n I+AK~I,I)(e,e)'

(13 )

Insert this into either (12) or (13) to find (7). This completes the proof of
the theorem. I

3, RELATIVE ASYMPTOTICS FOR e OFF SUPp(/l)

We would like to obtain an asymptotic expression for the ratio
qll(x)/PIl(x) because this will give information of how close the Sobolev
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orthogonal polynomials qn(x) are to the orthogonal polynomials Pn(x).
Recall that we have assumed that the measure J1 is in Nevai's class M(O, I).

This means that supp(J1) = [ -1, I] u E with E a set which is at most
denumerable and E' c { -1, I}. As a consequence we have

lim
Pn- [(x) 1

Pn(x) x+j?"=l'
(14)

n- :t::;

lim
1 p~(x) 1
---=

j?"=l'
(15 )

n _ c:X) n pAx)

lim
p~_ [(x) 1

x+j?"=l'
( 16)

n-'J::) p~(x)

uniformly for x on compact subsets of C\supp(ll) [12, pp. 33-36]. The

square root in the above formulas is such that Ix + j?"=ll > I whenever
x E C\[ -1, 1], which implies that j?"=l > 0 for x> 1 and Jx 2

- 1 < 0
for x < -1. The following discrete version of I'Hopital's rule turns out to
be very convenient (see, e.g., [5, Sect. 147, p. 414]).

LEMMA 1 (Stolz Criterion). Let X n and Yn (n = 0, 1,2, ... ) be real
sequences and suppose that Yn (n = 0, 1, 2, ... ) is monotone and that Yn#-O for
all n. If

exists, then

lim
n -+ cx)

LElRu{±oo}

provided either

or

x nlim -= L
n-,x; }'n

lim X n= lim Yn = 0,
n __ oo n_,x

lim Yn = ±oo.

We are now ready to proof the main theorem in this section:

THEOREM 2. Let qn(x) be the orthonormal polynomials for the inner
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(18 )

product (3) and Pn(x) the orthonormal polynomials for the measure p. If
p E M(O, 1) and c E lR\supp(p) then

lim qn(x) = 1
n~x Pn(x) Ie +.J?-=II

x (1 _ J?"=l .. (x +fiCl) - (c + .J?-=I)), (17)
x+fiCl x-c

uniformly for x on compact subsets of C\(supp(ll) U {c }).

Proof It is clear that K~I, 1)(c, c) is an increasing sequence and by (16)
this sequence tends to infinity. By the Stolz criterion and (16) we thus find

I
, 1 + A.K~I,I/(C, c) 1
1m =

n~oo l+).K~I,I)(c,c) (C+~)2'

The identity

A.[p~(C)]2 = 1 _ 1 + )'K~I,I/(C, c)
1+ ;'X~I, I)(e, e) 1+ AK~I, I)(e, e)

(19 )

Next we will obtain a suitable expression for K~o,-\)(x, c), From the
ChristofTel-Darboux formula

we find by taking a derivative with respect to y that

K (o, 1)( ) _ °Pn(x) P~_I(C) - p~(c) Pn-I(X)
n-I x,e -an

x-c

and if we use (14H 16) then this gives

(21)
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The asymptotic result (17) now follows by dividing both sides of (5) by
Pn(x) (this can always be done because all the zeros of Pn(x) accumulate
at supp(Jl» and by letting n tend to infinity, using (18 )-(21 ). I

The asymptotic formula (17) should be compared with [12, p.132,
Lemma 16]: both limits can be shown to be identical. Note that the limit
in (17) is independent of A, which shows that the asymptotic behaviour
in (17) is not uniform in ).>0 since for A.=O the ratio qn(x)/Pn(x) is
always 1. By going through the proof with x = e (now use the confluent
form for K~I~OI)(e, e)) we have

lim qn(e)=O.
,,~x;Pn(e)

From (7) one can also find

(22)

(23)

and now the parameter ), is present. This formula should be compared to
the corresponding expression in the case where a mass point distribution is
added to Jl [12, last formula on p. 132].

4. RELATIVE ASYMPTOTICS FOR C ON SUPp(Jl)

The asymptotic behaviour in the previous section was possible because
when C ¢ supP(Jl) then one has for Jl E M(0, 1)

I· [p~(C)J2 2 !Til ( !Til)
1m (1 I) = v C - 1 C + V C - 1 .

n ~ 00 K n ~ I (c, c)

A similar result for C E sUPP(Jl) needs more work, but recall that for
Jl E M(O, 1) and x E supp(Jl) we have

lim p~(x) = 0
n~ x; Kn_l(x, x) ,

[12, pp. 31-32, Theorem 11; 13]. We first prove a similar result but for the
derivatives of the orthogonal polynomials. In order to prove this result we
introduce the measure Jl2 for which dJl2(X) = (x - C)2 dJl(x), so that Jl2 is
absolutely continuous with respect to Jl. Let us first mention some relevant
facts about the orthonormal polynomials associated with this measure.
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LEMMA 2. Let Pn(x; J1.2) be the orthonormal polynomials with respect to
J1.2 and denote the related kernel by Kn(x, y; J1.2)' If Pn(x) and Kn(x, y) are
the orthonormal polynomials and the kernel lor the measure J1. then

and

Kn-1(c, c) ( Pn(c) )
K( )

Pn(X)-K ( ) Kn_1(x,c) ,
n C,C n-I C,C

(24)

Proof Denote by P n the linear space of polynomials of degree at most
n, then the system {(x-c)Pk(x;J1.2):k=0, 1, ...,n-l}u{Kn(x,c)} is an
orthogonal basis in L 2(J1.) for P no This means that in L 2(J1.) we have

Pn=(X-c)Pn_1EB.lL{Kn(x,c)} (26)

=(x-c)Pn - 2 EB.l L{Kn(x, c), (x-C)Pn-l(X;J1.2)}' (27)

where LUI' ..., Ik} is the linear space spanned by the functions I" ..., Ik'
Of course, {Pk(X): k = 0, 1, ... , n} is also an orthogonal basis in L 2(J1.) for
P n so that

holds in L 2(J1.), and by using (26) this gives

This combined with (27) means that

and in particular

Setting x = c gives B = - Apn( c)/Kn _ I (c, c). The coefficient A can be found
by computing the L 2(J1.) norm. This gives (24). In order to prove (25) we
observe that-for y fixed-(x-c)(y-c)Kn_ 1(x,y;J1.2)-Kn(x,Y)EPn,
and thus by (26) we have

(x - c)(y - c) Kn_1(x, y; J1.2) - Kn(x, y)

n -1

= L ck(X-c) Pk(X; J1.2) + cnKn(x, c),
k~O
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where for k < n

By using the reproducing property of the kernels we find

201

The coefficient Cn can easily be obtained by putting x=: C, giving (25). I

Very often one uses a result by Christoffel to express (x - C)2 Pn(x; 1t2) as
a Fourier series in pdx) with a finite number of terms [15, pp.29-31,
Sect. 2.5]. We have chosen an approach to express (x - c) Pn(.X; )12) as a
Fourier series in Pk(X) but with n + 1 terms. This approach-on Jordan
arCS-4:an already be found in [6].

Now we can prove the following result about the growth of the
derivatives of orthogonal polynomials relative to their sums, which shows
that the important results on the relative growth of orthogonal polyno
mials in M(O, I) obtained by Nevai et al. [12, 13] also hold for the
derivatives of the orthogonal polynomials.

THEOREM 3. Suppose)1 E M(O, 1) and C E [ - 1, 1] then

lim [p~(C)J2 =: 0
n ~ Xl K ~J ?(c, c) . (28)

(29)

Proof Since It E M(O, 1) it follows that also 1t2 E M(O, 1) [12, p. 68,
Theorem 20]. From (23) we have

1
· P~_I(C; )12) 01m .
n~x Kn _ 2 (c, C;)12)

By taking derivatives in (24) we obtain

and similarly from (25)

[ KI1,o)( )]2
. _ (1,I)() n-l C,C K1l,I)()K n_ 2(c,C,1t2)-K n_ 1 C,C - K ( ) ~ n-I C,C.

n I C, C
(30)
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We thus have
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where

From (23) it follows that Cn -> 1 as n -> 00. By the Cauchy-Schwarz
inequality

so that

(32)

where we used (23) for n -> 00. The result now follows by combining
(29)-(32). I

We now have all the results needed for proving the relative asymptotic
behaviour of the Sobolev orthogonal polynomials, for c E [ -1, 1]:

THEOREM 4. Let qn(x) = y~xn + ... be the orthonormal polynomials for
the inner product (3) and pAx) =Ynxn + ... the orthonormal polynomials for
the measure /1. Suppose /1 E M(O, 1) and c E [ -1, 1], then

lim y~ = 1
n - (1) ·Yn '

and

lim q~(c) p~(c) = 0.
n _oc

Moreover we have the relative asymptotic behaviour

lim qn(x)=l
n~oo Pn(x)

uniformly for x on compact subsets of C\supp(/1).

(33 )

(34)

(35)
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Proof The result in (33) follows immediately from (6) and (28). In a
similar way (34) follows from (7) and (28). Finally

q (x) y' KI1,O)(C x)
_n_=....!:_ Aq~(C) n-l , ..

Pn(x) In Pn(x)

By Cauchy-Schwarz we have

IK~I,-O/(C, xW ~ K n _ l(X, x) K~l,-l/(C, c)

and since Kn_l(x, x)/p~(x) is bounded on compact subsets of C\supp(JL),
the result follows from (28). I

We have only been considering asymptotic formulas for x if supp(J1).
When CE [-1,1] then we also find an asymptotic formula on the
oscillatory region:

THEOREM 5. Suppose that C E [ -1, 1]. If J1 E M(O, 1) and if there exists
a function "'(x) such that "'(x) Pn(x) is uniformly bounded on sUPP(/1), then

(36)
n _ <XJ

uniformly on closed sets of sUPP(J1)\ {c}.

Proof Clearly

so that by (33) it is sufficient to show that

lim "'(X)[qn(X)-y~ Pn(X)] =0,
I1-Ct) 'Yn

uniformly on closed sets of sUPP(J1)\ {c}, which by (5) is equivalent to
showing that

lim q~(c) "'(x) K~I.:_O/(C, x) = 0,
n _ ct)

(37)

uniformly on closed sets of supp(J1)\{c}. If we use (20) then (37) will
follow if we can show that
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lim q~(c)p;I(C)=O,

!I-X

lim q;.(c) Pn(c) = 0,
IJ_ 'x'

The first of these relations is already given by (34) and the second
asymptotic formula follows in a similar manner. We will only show the
third of these asymptotic formulas (the fourth can be shown using the same
reasoning). By using expression (7) we have

and by Theorem 3 we need only consider the ratio

JI + A.K~/' 1l(c, c)

From (30) we obtain

Pn(C) JI + AKn_l(c, c)

JI + AKn_I(C, c) Jl + ).K~I, I)(C, c)'

Kn_l(c,C) Kn_I(c,c)
(I 1J( )~ K ( )'K n' C, C n _ l C, c; /12

where d/12(X) = (x-c)2d/1(x), By a result of Nevai [12, p. 78, Theorem 6]
we have

for every x E supp(/1) and in particular the limit is zero for x = c. This
means that

and from this we obtain

lim Pn(c) -0
n~x JI+A.K~I,I)(C,C)- ,

from which the theorem follows. I
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These asymptotic formulas should again be compared to those corre
sponding to adding a mass point distribution at c to the measure J1 [12,
p.132].

The asymptotic behaviour of Pn(x) when x is near c E [ -I, I] remains
an open problem. Also the behaviour of Pn(x) on the support of J1 when
c ¢ supp(J1) remains open. The asymptotics when e E supp(J1)\ [ - 1, 1] is
more delicate and will be considered elsewhere.

5. RECURRENCE RELATION

The important property of the Sobolev inner product

(f, g) = r f(x) g(x) dJ1(x) + f Akf(k)(c) g(k)(C) (38)
a k~l

is the fact that

«x- C)m+ 1 f, g) = (f, (X- C)m+ 1 g) (39)

which expresses self-adjointness of multiplication by (x - c)m + I. This
property is easily verified. From it we obtain the following result [II]:

THEOREM 6 (Marcellim and Ronveaux). The orthonormal polynomials
qn(x) with Sobolev inner product (38) satisfy a (2m + 3)-term recurrence
relation

n+m+ 1

(x - e)m + 1 qn(x) = L cj.nqj(x),
j=n--m-J

where

(40)

Consider the infinite matrix

then C is a banded and symmetric matrix with band width 2m + 3. For the
case when m = I we have a five-term recurrence relation

(x - e)2 qn(x)

= an+2qn+ 2(X) + bn+ 1 qn + 1(x) + cnqn(x) + bnqn - 1(x) + anqn Ax),

(42)
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with initial values
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q _2(X) = 0, q -I(X) = 0, qo(X) = Po(X),

ql(X) =JI + A.[~'I(C)J2 PI(X),

The recurrence coefficients are

a" = <(X - c f q", q" _ 2 >, n~ 2,

b"=«x-c)2 q,,,qn_I)' n~l,

c,,= «X-C)2 q", qn), n~O.

We show that under appropriate conditions the pentadiagonal matrix C for
this recurrence relation is a compact perturbation of the pentadiagonal
matrix (J - C)2, where J is the tridiagonal (Jacobi) matrix associated with
the orthogonal polynomials with measure fl,

THEOREM 7. The recurrence coefficients in (42) of orthonormal polyno
mials with respect to the inner product (3) are given by

= an- 2,n-2 ((J- )2)
an C n-2,n'

an. n

b =an-I,n-I ((J- )2) +an- 2.n- 1((J_ )2)
n C n - 1. n C n - 2. n

an . n an,n

_an,n+1 an_l,n_1 ((J- )2)
C "n-l,n+l'

an,n an+l,n+1

(43)

(44)

(
a a+ n+ I, n+ 2 . n, n+ 1

an + 2, n+ 2 an + I, n+ 1

an,,,+2 ) ((J _ )2)
C n + 2,,,

a,,+2.n+2

_an_l,n an'''+1 ((J- )2)
C n+ 1,,,-1>

an,n an+l,n+1
(45)
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where an. n= y~jyn and ai<. n= -A.q~(e) p;'(e) (k < n). If supp(Jl) = [ -1, 1]
and Jl E M(O, 1) then for every e E IR

lim bn = -e,
n_ co

1
. 1+ 2e2

1m e =---
n~oo n 2

(46)

Proof The orthonormal polynomials with respect to the measure Jl
satisfy the three term recurrence relation

which is equivalent to

Jp=xp,

where J is the Jacobi matrix and P = (Po, PI' P2' ... )' is the column vector
containing the orthonormal polynomials. From this we find

(J - e)2 P = (x - ef P,

which in turn is equivalent to

(x - ef Pn(x) = «J - ef)n.n+2 Pn+2(X) + «J - c)2)n. n+ I Pn+ I(X)

+ «J - c)2)n. n Pn(x)

+ «J - e)2)n.n_1 Pn_I(X) + «J - e)2)n.n_ 2 Pn- 2(X). (47)

The recurrence relation (40), with m = 1, is equivalent to

where C is the infinite matrix with entries given by (41) and
q = (qo, ql' q2' ... )'. The Fourier expansion (10) can be written as q = Ap,
with A the lower triangular matrix containing the av If we multiply the
equation (x - c) P = (J - c) P on the left by A, then

(x- c)q= A(J- c) A -lq,

from which one easily obtains

so that C = A(J - C)2 A -I. We know that C is a symmetric pentadiagonal
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matrix, so we can compute the entries an=Cn- 2,n, bn=Cn-l,n, and
en = Cn, n by using the formulas

(A I I
)/1,,,=--,

an,n
(A - 1) = _ an, n + I

n + 1. n
all, "an + l.n+ 1

giving (45),

The asymptotic behaviour given by (46) follows because when
/l E M(O, I) then

lim ((J-e)2)n,n+2=~'
/I-'X'

lim ((J-e)2)n.n+l= -e,
Il_'X

• 2 I +2c 2

hm «(1-e) )n n=--'
n~x; '2

The behaviour of the factors ak,n follows from (6), (16), (18), and (22)
when elf supp(/l); when e E [ - I, 1] then one also uses (7), (28), and
(33). I

The restriction that supp(/l) = [ - I, I] can be removed but needs a
more delicate analysis when C E supp(/l)\[ -I, I].
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